There’s no question that technology has infiltrated every corner of our lives, from smartphones and watches to smart doorbells, electric cars, and non-stop streaming media. And most would agree that technology makes us smarter. Or at least more aware and engaged.

Cities worldwide, too, have gotten smarter. As a matter of fact, smart cities are proliferating; these municipalities are taking advantage of technology to increase operational efficiency, share information, and improve the quality of government services and citizen welfare, according to the Internet of Things Agenda website. And in a study by research firm Frost & Sullivan, it was reported that smart cities’ spending on technology in the next six years will reach $237 billion by 2025, up from $96 billion in 2019, and there will be more than 26 smart cities worldwide by 2025.

So, how are smart cities designed? And how do they utilize technology?

Smart cities create and implement an ecosystem of solutions that add value and employ intelligent methodology and proper implementation of problem-solving techniques to benefit the collective good. Most smart cities rely on the internet of things ( IoT), a network of connected, web-enabled, unique computing devices. Further, they depend on these “things” transferring data over this network without requiring human-to-human or human-to-computer interaction. For example, smart earbuds, fitness trackers, and a person with a heart monitor are all “things.” IoT provides businesses as well as cities with a real-time view of how their systems work, providing insights into everything from machine performance to supply chain and logistics operations.

How is IoT used in smart city architecture?

Definitions vary, but researchers generally agree that there are four layers of IoT architecture that comprise a smart city. They are:

  1. The sensing or perception layer, where sensors either monitor or control some physical object to capture data; for example temperature, humidity, fluid levels in a tank, or the speed of an assembly line. Then an actuator—a mechanical device for moving or controlling something—can take action in real-time, like adjusting the flow rate of a fluid. 
  2. The network layer transfers raw data and converts it from analog into digital format and then sends it through an internet gateway via WI-FI, cellular, or wired technology systems.
  3. Once the data has been digitized, the data processing or management layer processes it to reduce the data volume before it goes to a data center or cloud. Machine learning tools can be used to provide feedback to the connected system to improve its performance. The data can then deliver key information to IT and business managers.
  4. At the application layer, industry and/or company-specific applications can be used to perform in-depth analysis to determine what action needs to be taken, like making changes to device settings or other means of optimizing performance.

By utilizing these four layers of smart city architecture, municipal planners and architects can work to improve a city’s quality of life for its citizens using technology and data analysis. Key characteristics that determine a city’s intelligence include a technology-driven infrastructure, environmental initiatives, a streamlined public or even free public transportation system, a strong sense of urban planning, and people to live and work within the city and utilize its resources.

A smart city’s success ultimately depends on its ability to form a strong relationship between its government and the private sector because most of the work that is done to create and maintain a digital, data-driven municipality occurs outside its government. U.S. cities including Columbus, OH, Denver, CO, and San Francisco, CA are just a few examples of how cities are embracing smart technology to find new solutions to some of their most urgent urban challenges. While creating a smart city has its issues—connectivity, energy conservation, and traffic and waste management are just a few—with good communication between city officials, urban planners, and residents, building or transforming a smart city is an attainable goal.